
Package: OrdCD (via r-universe)
September 5, 2024

Type Package

Title Ordinal Causal Discovery

Version 1.1.2

Date 2023-05-14

Description Algorithms for ordinal causal discovery. This package aims
to enable users to discover causality for observational ordinal
categorical data with greedy and exhaustive search. See Ni, Y.,
& Mallick, B. (2022)
<https://proceedings.mlr.press/v180/ni22a/ni22a.pdf> ``Ordinal
Causal Discovery. Proceedings of the 38th Conference on
Uncertainty in Artificial Intelligence, (UAI 2022), PMLR
180:1530–1540''.

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Imports gRbase, MASS, bnlearn, igraph, stats, Matrix

URL https://github.com/nySTAT/OrdCD

BugReports https://github.com/nySTAT/OrdCD/issues

Repository https://nystat.r-universe.dev

RemoteUrl https://github.com/nystat/ordcd

RemoteRef HEAD

RemoteSha 8b6080987119d2412e1e9ff12bd92b19f982eeae

Contents
OrdCD . 2

Index 4

1

https://proceedings.mlr.press/v180/ni22a/ni22a.pdf
https://github.com/nySTAT/OrdCD
https://github.com/nySTAT/OrdCD/issues

2 OrdCD

OrdCD Causal Discovery for Ordinal Categorical Data

Description

Estimate a causal directed acyclic graph (DAG) for ordinal categorical data with greedy or exhaus-
tive search.

Usage

OrdCD(
y,
search = "greedy",
ic = "bic",
edge_list = NULL,
link = "probit",
G = NULL,
nstart = 1,
verbose = FALSE,
maxit = 50,
boot = NULL

)

Arguments

y a data frame with each column being an ordinal categorical variable, which must
be a factor.

search the search method used to find the best-scored DAG. The default search method
is "greedy". When the number of nodes is less than 4, "exhaust" search is avail-
able.

ic the information criterion (AIC or BIC) used to score DAGs. The default is "bic".
edge_list an edge list of a CPDAG, which may contain both directed and undirected edges.

This option can significantly speed up the algorithm by restricting the search
space to DAGs that are Markov equivalent to the input CPDAG. Such CPDAG
may be obtained by e.g., the PC algorithm; see the example below.

link the link function for ordinal regression. The default is "probit". Other choices
are "logistic", "loglog", "cloglog", and "cauchit".

G a list of DAG adjacency matrices that users want to restrict their search on for
the "exhaust" search. The default is "NULL" meaning no restriction imposed on
the search.

nstart number of random graph initializations for the "greedy" search.
verbose if TRUE, messages are printed during the run of the greedy search algorithm.
maxit the maximum number of iterations for the greedy search algorithm. The default

is 50. When the maximum number of iteration is achieved, a warning message
will be generated to caution the user that the algorithm has not converged.

boot the number of bootstrap samples. Default is no bootstrapping.

OrdCD 3

Value

A list with "boot" elements. Each element is a list with two elements, gam and ic_best. gam is
an estimated DAG adjacency matrix whose (i,j)th entry is 1 if j->i is present in the graph and 0
otherwise. ic_best is the corresponding information criterion value.

Examples

set.seed(2020)
n=1000 #sample size
q=3 #number of nodes
y = u = matrix(0,n,q)
u[,1] = 4*rnorm(n)
y[,1] = (u[,1]>1) + (u[,1]>2)
for (j in 2:q){

u[,j] = 2*y[,j-1] + rnorm(n)
y[,j]=(u[,j]>1) + (u[,j]>2)

}
A=matrix(0,q,q) #true DAG adjacency matrix
A[2,1]=A[3,2]=1
y=as.data.frame(y)
for (j in 1:q){

y[,j]=as.factor(y[,j])
}

time=proc.time()
G=OrdCD(y) #estimated DAG adjacency matrix
time=proc.time() - time
print(A) #display the true adjacency
print(G) #display the estimated adjacency
print(time[3]) #elapsed time

time2=proc.time()
colnames(y)=1:ncol(y)
PC=bnlearn::pc.stable(y,test="mi-sh",alpha=0.01)
edge_list=matrix(as.numeric(PC$arcs),ncol=2)
G2=OrdCD(y, edge_list=edge_list) #estimated DAG adjacency matrix with an input CPDAG from PC algorithm
time2=proc.time()-time2
print(G2) #display the estimated adjacency
print(time2[3]) #elapsed time

Not run:
time3=proc.time()
G3=OrdCD(y,boot=10) #estimated DAG adjacency matrix with bootstrapping
time3=proc.time() - time3
G_avg = matrix(colMeans(matrix(unlist(G3),nrow=q^2+1,byrow=TRUE))[1:(q^2)],q,q)
print(G_avg) #display the estimated adjacency averaged over 10 bootstrap samples
print(time3[3]) #elapsed time

End(Not run)

Index

OrdCD, 2

4

	OrdCD
	Index

