Package: COLP 1.0.0

Yang Ni

COLP: Causal Discovery for Categorical Data with Label Permutation

Discover causality for bivariate categorical data. This package aims to enable users to discover causality for bivariate observational categorical data. See Ni, Y. (2022) <arxiv:2209.08579> "Bivariate Causal Discovery for Categorical Data via Classification with Optimal Label Permutation. Advances in Neural Information Processing Systems 35 (in press)".

Authors:Yang Ni [aut, cre]

COLP_1.0.0.tar.gz
COLP_1.0.0.zip(r-4.5)COLP_1.0.0.zip(r-4.4)COLP_1.0.0.zip(r-4.3)
COLP_1.0.0.tgz(r-4.5-any)COLP_1.0.0.tgz(r-4.4-any)COLP_1.0.0.tgz(r-4.3-any)
COLP_1.0.0.tar.gz(r-4.5-noble)COLP_1.0.0.tar.gz(r-4.4-noble)
COLP_1.0.0.tgz(r-4.4-emscripten)COLP_1.0.0.tgz(r-4.3-emscripten)
COLP.pdf |COLP.html
COLP/json (API)

# Install 'COLP' in R:
install.packages('COLP', repos = c('https://nystat.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/nystat/colp/issues

Datasets:
  • CatPairs - Categorical Cause-Effect Pairs

On CRAN:

Conda:

2.70 score 1 stars 200 downloads 1 exports 2 dependencies

Last updated 2 years agofrom:3bd5f55bef. Checks:4 OK, 5 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 22 2025
R-4.5-winOKMar 22 2025
R-4.5-macOKMar 22 2025
R-4.5-linuxOKMar 22 2025
R-4.4-winNOTEMar 22 2025
R-4.4-macNOTEMar 22 2025
R-4.4-linuxNOTEMar 22 2025
R-4.3-winNOTEMar 22 2025
R-4.3-macNOTEMar 22 2025

Exports:COLP

Dependencies:combinatMASS