Package: COLP 1.0.0

Yang Ni

COLP: Causal Discovery for Categorical Data with Label Permutation

Discover causality for bivariate categorical data. This package aims to enable users to discover causality for bivariate observational categorical data. See Ni, Y. (2022) <arxiv:2209.08579> "Bivariate Causal Discovery for Categorical Data via Classification with Optimal Label Permutation. Advances in Neural Information Processing Systems 35 (in press)".

Authors:Yang Ni [aut, cre]

COLP_1.0.0.tar.gz
COLP_1.0.0.zip(r-4.5)COLP_1.0.0.zip(r-4.4)COLP_1.0.0.zip(r-4.3)
COLP_1.0.0.tgz(r-4.4-any)COLP_1.0.0.tgz(r-4.3-any)
COLP_1.0.0.tar.gz(r-4.5-noble)COLP_1.0.0.tar.gz(r-4.4-noble)
COLP_1.0.0.tgz(r-4.4-emscripten)COLP_1.0.0.tgz(r-4.3-emscripten)
COLP.pdf |COLP.html
COLP/json (API)

# Install 'COLP' in R:
install.packages('COLP', repos = c('https://nystat.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/nystat/colp/issues

Datasets:
  • CatPairs - Categorical Cause-Effect Pairs

On CRAN:

2.70 score 1 stars 145 downloads 1 exports 2 dependencies

Last updated 2 years agofrom:3bd5f55bef. Checks:OK: 3 NOTE: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 23 2024
R-4.5-winOKOct 23 2024
R-4.5-linuxOKOct 23 2024
R-4.4-winNOTEOct 23 2024
R-4.4-macNOTEOct 23 2024
R-4.3-winNOTEOct 23 2024
R-4.3-macNOTEOct 23 2024

Exports:COLP

Dependencies:combinatMASS